19 research outputs found

    ManifoldOptim: An R Interface to the ROPTLIB Library for Riemannian Manifold Optimization

    Get PDF
    Manifold optimization appears in a wide variety of computational problems in the applied sciences. In recent statistical methodologies such as sufficient dimension reduction and regression envelopes, estimation relies on the optimization of likelihood functions over spaces of matrices such as the Stiefel or Grassmann manifolds. Recently, Huang, Absil, Gallivan, and Hand (2016) have introduced the library ROPTLIB, which provides a framework and state of the art algorithms to optimize real-valued objective functions over commonly used matrix-valued Riemannian manifolds. This article presents ManifoldOptim, an R package that wraps the C++ library ROPTLIB. ManifoldOptim enables users to access functionality in ROPTLIB through R so that optimization problems can easily be constructed, solved, and integrated into larger R codes. Computationally intensive problems can be programmed with Rcpp and RcppArmadillo, and otherwise accessed through R. We illustrate the practical use of ManifoldOptim through several motivating examples involving dimension reduction and envelope methods in regression

    ldr: An R Software Package for Likelihood-Based Su?cient Dimension Reduction

    Get PDF
    In regression settings, a su?cient dimension reduction (SDR) method seeks the core information in a p-vector predictor that completely captures its relationship with a response. The reduced predictor may reside in a lower dimension d < p, improving ability to visualize data and predict future observations, and mitigating dimensionality issues when carrying out further analysis. We introduce ldr, a new R software package that implements three recently proposed likelihood-based methods for SDR: covariance reduction, likelihood acquired directions, and principal fitted components. All three methods reduce the dimensionality of the data by pro jection into lower dimensional subspaces. The package also implements a variable screening method built upon principal ?tted components which makes use of ?exible basis functions to capture the dependencies between the predictors and the response. Examples are given to demonstrate likelihood-based SDR analyses using ldr, including estimation of the dimension of reduction subspaces and selection of basis functions. The ldr package provides a framework that we hope to grow into a comprehensive library of likelihood-based SDR methodologies

    An Extension of Generalized Linear Models to Finite Mixture Outcome Distributions

    No full text
    <p>Finite mixture distributions arise in sampling a heterogeneous population. Data drawn from such a population will exhibit extra variability relative to any single subpopulation. Statistical models based on finite mixtures can assist in the analysis of categorical and count outcomes when standard generalized linear models (GLMs) cannot adequately express variability observed in the data. We propose an extension of GLMs where the response follows a finite mixture distribution and the regression of interest is linked to the mixture’s mean. This approach may be preferred over a finite mixture of regressions when the population mean is of interest; here, only one regression must be specified and interpreted in the analysis. A technical challenge is that the mixture’s mean is a composite parameter that does not appear explicitly in the density. The proposed model maintains its link to the regression through a certain random effects structure and is completely likelihood-based. We consider typical GLM cases where means are either real-valued, constrained to be positive, or constrained to be on the unit interval. The resulting model is applied to two example datasets through Bayesian analysis. Supporting the extra variation is seen to improve residual plots and produce widened prediction intervals reflecting the uncertainty. Supplementary materials for this article are available online.</p
    corecore